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Application of RES for extreme climate events stressful for power
systems — PhD B. Cozian
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Application of RES for extreme climate events stressful for power
systems — PhD B. Cozian

(a) 120-day events
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We need to develop a new methodology to sample
shorter events (e.g. a few days or weeks) critical for
power network stability
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Genealogical particle analysis algorithm: selecting, killing and cloning
trajectories - (Del Moral, Garnier, 2006)

We regularly stop simulations and resample to weight the ensemble toward the rare event
of interest but track the unbiased probabilities.
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Sample paths of the Giardina-Kurchan algorithm
from (Bouchet, Jack, Lecomte, Nemoto, 2016)




Idea for tackling shorter events: Coupling ML with Rare event sampling

0(X¢)
! Coupling rare event algorithms with data
based learning of committor functions
cloning
LT =~
‘ ______ - Machine Learning
----- ' B o
‘ Rare Event Algorithm (Committor function)
killing
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From Noyelle, R., PhD Thesis (2024)

» One example: Bouchet, Jack, Lecomte, Nemoto, PRE, 2016

C?[; (Committor function) (For X in dimension 1)




Idea for tackling shorter events: Coupling ML with Rare event sampling

P(A|X = z)

Machine Learning

Optimal score
function

Direct
i —

(Committor function)

Two options for @ :

S e e e o o o e e e S EEE EEn B B EEn SEn SEn EEn EEm EEm BEn B SEn SEn Smm Emn EEm EEn B B EEm Mmm Emm M B Em e Em w

B. Use an Al-emulator of Climate model
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Direct prediction:
Tackling the Accuracy-Interpretability trade-off

Lovo & Lancelin et al. (2024)
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https://arxiv.org/abs/2410.00984



https://arxiv.org/abs/2410.00984

Tackling the Accuracy-Interpretability Trade-off in a Hierarchy of
Machine Learning Models for the Prediction of Extreme Heatwaves

> Application: prediction of heatwaves over France Lovo & Lancelin et al. (2024)

Target: Predict the distribution of heatwaves defined with

1 t+T 1 R
40 =7 i | 1Tam — BT G e

e T isthe duration of the heatwave, we set T = 14 days here.
e D isthe fixed region of interest. Here, D = France.

———————————————————————————————————————————————————————




We used simulated data from a state-of-the art Climate model

180°

> 1000 years of simulated data of the CESM model at 1° resolution
> No atmosphere/ocean coupling
> Stationary climate of the years 2000




A probabilistic regression task from initial conditions

Predictors:

X(t)

Target:

Soil Moisture
over France

Geopotential Height
at 500hPa

Snapshot of weather fields at time t

Predict P( A(t + 7) | X(t) ) with a focus on extremes

e Tisthe lead time at which we want to predict. T = 0,5,10,30, ... days.

Parametric approximation: [IP(ALX = 33) ~ N(,LL(CE), 0'(:13))}

@ LMD
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Can we find an optimum between accuracy and interpretability?

Method | /i(X;0) 0(X;0) trainable  non-trainable hyperparameters
parameters  parameters
GA M-X o 27 425 0 1
IINN | gu(M-X) s(go(M-X)) | 55058* 0 10
ScatNet | B,-¢(X) s(Bs-o(X)) 19 930* 656 640* 5
CNN gu(X) s(g- (X)) 684 000* 0 10
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models from the simplest to the more complex ones.

To predict extreme heatwaves, we used a hierarchy of |




An important distinction between “classic” ML and Deep Learning
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Can we find a optimum between accuracy and interpretability?
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A more complex model: Convolutional Neural Networks

Input Predictive model: CNN

Snapshot of Re N
weather fields X / k
Output
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¢ Pros: Particularly performant on these kind of tasks (with enough training data)

** Cons: A lot of parameters to learn & behave as a black-box
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An intermediate model with a convolutional architecture: Scattering Networks

Input Predictive model: Scattering Network
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(Bruna & Mallat, 2012) ‘

» ldea: Filter images with wavelets at various orientations and scales to extract frequency
information, apply non-linearity and pooling, then project the features linearly.
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@ ‘ » Advantages: Very few learnable parameters & interpretable by design
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An intermediate model with a convolutional architecture: Scattering Networks

Wavelets filters for different scales and orientations Gaussian low-pass filter
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Can we find an optimum between accuracy and interpretability?

Method | /i(X;0) 0(X;0) trainable  non-trainable hyperparameters
parameters  parameters
GA M-X o 27 425 0 1
IINN | gu(M-X) s(go(M-X)) | 55058* 0 10
ScatNet | B,-¢(X) s(Bs-o(X)) 19 930* 656 640* 5
CNN gu(X) s(g- (X)) 684 000* 0 10
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models from the simplest to the more complex ones.

To predict extreme heatwaves, we used a hierarchy of |




Accuracy aspects

Who needs CNNs when you have wavelets?

Metric
:e‘ftzigher' the CRPSS NLLS BCES
GA 0.2864 +£0.0009 | 0.2169 +0.0009 | 0.293 +£0.001
IINN 0.287 +0.002 0.217+0.002 | 0.291 £0.003
ScatNet | 0.3097+0.0007 | 0.246+0.003 | 0.314+0.005
CNN 0.310+0.003 0.245+0.007 | 0.311+0.008

Model

» Skill above linearity: GA is outperformed by more than 10%.
» We don’t need to learn everything: ScatNet has higher skill than CNN.
» Perfect candidate for low data regimes: ScatNet has fewer parameters than

@ . GA and is robust when trained with less data (e.g., 80 years; not shown).
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Interpretability aspects

Gaussian Approximation: What are the optimal projection patterns?

. data
— GA

o : °® %gul & ."
g o SR el ‘
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Soil moisture 15

» Persistent anticyclonic anomaly over France
» Dry soil is important (more in North than South France)
| » Coherent patterns over the North Atlantic linked with the path or strength
@ L‘aD of the Jet Stream. 23



Interpretability aspects

Ad-hoc explainability tools reveal similar patterns for CNN and G.A

» Very similar patterns
» Smaller weight to the positive geopotential anomaly over Western
Europe and extend further North over Scandinavia
@ ) » Hard to get more insights on how the CNN makes his predictions y
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Interpretability aspects

At first order, ScatNet behaves as the Gaussian Approximation

ScatNet coarse field
projection pattern

G.A projection pattern

<dEENT 40Ol ESE 2Ty

-0.002 0.000  0.002 -0.15-0.10 —0.05 0.00 0.05 0.10 0.15
Metric
The higher, the CRPSS NLLS BCES
better GA | 0.28640.0009 | 0.21690.0009 | 0.293+0.001
E ScatNetcoarse | 0.2862+0.0005 | 0.203+0.001 | 0.291+0.001
Eo CNN 0.310+0.003 0.245+0.007 | 0.311+0.008
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Interpretability aspects

ScatNet can identifies the most relevant scales for prediction

Relative feature importance of various scales, expressed as percentages

g wmm mmw

scale j =0 | scale j =1 ,Scale j =\2\‘ coarse field | soil moisture
Relative FI (in %) | 5.2+0.3 | 10.4+0.5 },20.0+ I.Q,; 51.0+2.4 13.5+1.0

-_—T— =

e

Correspond to oscillations that are 22 pixels
large, i.e. ~ 400 km
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Allow to inspect a whole new set of feature importance Interpretability aspects
patterns for each part of the Fourier domain
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ﬂ Conclusion and perspectives

» Skill above linearity: GA is outperformed by more than 10%.

» CNN model does not outperform the interpretable ScatNet, even with enough
data.

» CNN explanations are minor variations of known results from GA.

» ScatNet identifies relevant scales and orientations for prediction, linking
performance gains from GA to 400 km wavelength oscillations in the
geopotential height field over the North Atlantic.

» ScatNet is a promising tool for climate science applications.

28



Riding the (Large-Scale) Deep Learning wave:

29



How traditional climate/weather models works?

State variable X = [u(x,y,z), T(x,y,2), ... ] Schematic for Global

> Pressure p Atmospheric Model
» Free surface n

Horizontal Grid (Latitude-Longitude)

» salinity s (ocean), humidity H (atmos.)

Vertical Grid (Height or Pressure)

Dynamics with partial differential equation
(PDE)

0.X = F(X)

irges

» Fluid-dynamics: Navier-stokes equation
simplication

» These models are very costly to run

2
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2022-today: The deep learning revolution

Big Tech is starting the race to pure
data-driven weather forecast...

FOURCASTNET: A GLOBAL DATA-DRIVEN HIGH-RESOLUTION

2022 WEATHER MODEL USING ADAPTIVE FOURIER NEURAL
OPERATORS
A PREPRINT nVI DIA®
Pangu-Weather: A 3D High-Resolution System ‘ |
2022 for Fast and Accurate Global Weather Forecast & 'A
-

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian**, Fellow, IEEE

HUAWEI

GraphCast: Learning skillful medium-range
2023 global weather forecasting

Remi Lam"l, Alvaro Sanchez-Gonzalez"l, Matthew Willson'-'l, Peter Wlmsberger"l, Meire l-‘ortunato"l,
Ferran Alet™!, Suman Ravuri”!, Timo Ewalds!, Zach Eaton-Rosen!, Weihua Hu!, Alexander MeroseZ2, .

Stephan Hoyer2, George Holland!, Oriol Vinyals!, Jacklynn Stott!, Alexander Pritzel!, Shakir Mohamed' and Goog Ie Deep M I nd

Peter Battaglia!

"equal contribution,  Google DeepMind, >Google Research a1




How these models work?

N

/f FourCastNet
20 variables Vision
sur 5 niveaux Transformers
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k Quelques modéles de PNT basés sur I'lA /

Enchainement Modéle IA Modéle IA Modéle IA Modéle IA
autorégressif X t entrainé entrainé entrainé entrainé X t+NA

Figure 1. Schéma récapitulatif des modeles présentés ici qui partent d'un état de I'atmosphere pour le prévoir a une courte échéance A. Pour produire une
prévision sur un horizon plus long NA, le modele utilisé est enchainé N fois. Il est a noter que GraphCast prend non seulement X(t), mais aussi X(t — A),
mais cette spécificité est omise dans cette figure pour une meilleure lisibilité.

@ h Source: R. Lguensat, Les nouveaux modeles de prévision météorologique basés sur l'intelligence artificielle : opportunité ou menace ?, La
LMD Métérologie, 2023.




Potential benefits of climate models emulators

2018-01-08
NVIDIA.
Source: ACE

emulator,
2023

Ground truth

» 10,000 to 100,000 faster than conventional GCMs allowing Huge Ensemble
simulations. Particular interest to study rare events and climate projections.

» These are differentiable models. Particular interest for data assimilation.
@ & » If trained directly on observations, could it help discover new physics?
L
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Limitations of Deep Learning weather forecasts

» The lack of physical constraints in deep learning approaches can lead to non-physical
predictions.

» These models make deterministic predictions, making it difficult to estimate the uncertainty
surrounding their predictions.

» A less studied challenge is their limited ability to extrapolate beyond their training range.
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Limitations of Deep Learning weather forecasts

» The lack of physical constraints in deep learning approaches can lead to non-physical
predictions.

» These models make deterministic predictions, making it difficult to estimate the uncertainty
surrounding their predictions.

» A less studied challenge is their limited ability to extrapolate beyond their training range.

Our approach: AI-RES
Use an emulator in score function to drive

Data Train emulator rare event sampling in Climate Model
/ X 4 ‘"‘é * 1t Y“ ‘\“ H, " Q

' (1) Accurately

estimate return

\ . \ ) A ‘ —_— e WRETE
R period in Climate
Repeat as v Model
needed using (2) Improve

emulation of rare
events 36

additional rare
event instances
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We first want to test the procedure for a cheap-to-run Climate Model

>

=

PlaSim: an intermediate complexity
GCM with simple parametrizations

We have a 100,000 years control run
to study statistics of rare events

We can impose forcings such as soil
moisture (or other slow drivers) to
study the impact on relevant
extreme events (heatwaves, cold
snaps, etc.)

The first step is to develop a (stable)
dynamical emulator of this model.

LMD

Forcing
variables F}

Prognostic
variables P;

Z500 from a PlaSim simulation

Prognostic
variables at

next time step
P

Diagnostic
variables

Dy

E Predictions
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First step accomplished?

Pangu-PlaSim0106

zg 500hPa at lead time 0 hours

Ground Truth

41
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ﬂ Next steps and questions to answer

~
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>

>

>

Finish the hyperparameter optimization of the emulator...
Add other varying boundary variables such as soil moisture, snow cover, etc.
Test the emulator on the prediction of extremes
Test the emulator on probabilistic metrics
o How to construct good ensembles with the emulator?
Use emulator predictions as score function in Rare event algorithm
- Which algo?
- Which event of interest?

o Which criteria of success for the algorithm?
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Thank you for your attention!

ANY
QUESTIONS?
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