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Introduction

> The energy transition requires an increasing share of renewable generation and the
closure of coal-fired power plants.

» Recent crises have highlighted the risk of relying more on gas power plantsin the
meantime.

» Modeling the investment dynamics of power plants is challenging because producers
invest in power plants to earn revenues on a market that is dynamic with numerous
players, involving uncertainties in both costs and production.

» Environmental policies further complicate market dynamics

How can entry and exit dynamics in the electricity market be modeled, considering
strategic behavior, uncertainty and environmental policies?



Main Contributions

This paper, originally published in Bassiere, Dumitrescu, and Tankov 2024
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Develops a long-term model for the dynamics of the electricity industry that
describes the energy transition

Introduces strategic interactions under cost and production uncertainty, accounting
for agent heterogeneity, construction lifetime, and endogenous fuel prices

Proves the existence of equilibrium with the uniqueness of electricity and fuel prices

Demonstrates the equivalence with the mean-field control central planner
counterpart of the problem

Analyzes the dynamics of entry and exit with environmental policies.



Related Literature

> Electricity market models can be classified into three categories (Ventosa et al. 2005):

(1) Market equilibrium models: tractable equilibrium concept but with simplifying
assumptions (e.g., static models, homogeneity of agents)

(2) Optimization models: engineering models representing large power systems lacking
clear strategic interaction representation

(3) Simulation models: simulate the behavior of large power systems over time, difficult to
compute and interpret

> Mean-Field Game models: offer a dynamic equilibrium concept for many players with
a tractable solution, relaxing assumptions like agent homogeneity, and allowing for
uncertainty and endogenous fuel prices.



A Mean-Field Game Model for Entry/Exit on the electricity

market




The Agents

Each electricity producerj uses a technology of type i, from categories:

» Conventional Power Plants:

- Operate one power plant, bidding a fraction £ of this capacity on the market.

- The production marginal cost function is given by:
/ ;
d©)= 9 + Y+ feppf + 2
Operating cost ~ Fuel cost ~ Carbon cost Random cost (CIR)
» Renewable Power Plants:
- Characterized by a random production capacity factor S/ (Jacobi)

- Bid their entire possible production on the market.

> Baseload Power Plants:
- Aggregated supply function, unaffected by the market dynamics

» Agents random component



Price Formation

Electricity Price:

> Agents offer electricity quantities to the market to meet an exogenous demand.

» Conventional producers choose a fraction £ to maximize revenue, while renewable
producers offer their full production.

> If the market fails (e.g., insufficient supply), the electricity price is capped at P*.

Fuel Price:

» Each fuel type has an exogenous supply function.
» The fuel price is determined by matching this supply function to the total fuel
consumption for electricity production with associated technologies

» Price equations



Entry on the Market

» Potential producers aim to optimize their market entry (7;) and exit () times:

e Maximize expected revenues and minimize entry costs, conditional on their chosen
entry and exit times.

» Conventional producers already in the market evaluate the optimal exit time (7,):
e Maximize expected market revenues and scrapping value, conditional on the exit time.

» The problem includes considerations of fixed costs, construction time, plant lifetime,
dynamic investment costs for technology i



Entry on the Market

> Potential producers aim to optimize their market entry (7;) and exit (7;) times in order
to:
e Maximize expected revenues and minimize entry costs, conditional on their chosen
entry and exit times.

» Conventional producers already in the market evaluate the optimal exit time (1) to:
e Maximize expected market revenues and scrapping value, conditional on the exit time.

» The problem includes considerations of fixed costs, construction time, asset lifetime,

dynamic investment costs for technology i

» The central planner controls market entries and exits to maximize the total revenues
of all agents, minus consumer electricity costs.
» Proven equivalence with the mean-field game problem.

» Maximization Programs



Nash Equilibrium

» Classical Nash Equilibrium: Agentj chooses strategies (T{, Té) without incentive to
deviate, considering others’ strategies

>



Nash Equilibrium for perfect competition

» Classical Nash Equilibrium: Agent j chooses strategies (T{, Té) without incentive to
deviate, considering others’ strategies

>

> Mean-Field Theory: Replace class of agent j by an infinite population of agents of type
J, described by a distribution n7,(da, dx) of ages and costs

> Mean-Field Nash Equilibrium: A representative agent of classj has no incentive to

deviate given distributions m;j(da, dx)

» Mean-Field formulation



Linear programming approach

» Each agent maximises its expected gains as a linear function of the occupation
measure of the population in the market, allowing to use the linear programming
approach

» Addition of linear constraints on the measures to respect the stochastic process
dynamics for cost functions and renewable capacity factor

» MF Nash equilibrium a sequence of entry/exit measures and price functions such
that:
1. Foreachi=1,...,N, measures maximize the conventional producers program
2. Foreachi= N+ 1,..., N, measures maximize the renewable producers program
3. Foreach t, the price vector is the solution of the system of demand matching supply

» Formal definition of Nash equilibrium X' » Numerical resolution



Numerical illustration




Calibration

» German data over 25 years starting from 2019, with 24 representative hours per year
(peak/off-peak) and 2.3% annual growth

» Coal, Gas, Wind for entry and exit

» 3% annual reduction in renewable investment costs (learning effect)

Environmental Policies:

» Carbon tax: from 20€ to 200€ by 2045
» Renewable production subsidies: from 60€ in 2019 to 0€ by 2045



Benchmark scenario
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Figure 1: Evolution of off-peak supply
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Figure 2: Evolution of peak supply
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Carbon Tax: Massive renewable entry and coal phase-out
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Carbon Tax: ... but gas production rises in the long run
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Figure 5: Evolution of peak supply
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Carbon Tax: ... with strong electricity prices
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RES Subsidy: Faster renewable penetration
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Figure 8: Evolution of capacities



RES Subsidy: ...but slowed in the long run
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Figure 10: Evolution of peak supply
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Discussion

» Gas plants remain competitive due to low costs, lower emissions, and predictable
production

» Carbon tax phases out coal and promotes renewables, but raises electricity prices
and does not defer gas entries

> Renewable subsidies accelerate renewables, but only with a subsidy threshold and
do not push coal to phase-out

» Future work: central planning will allow the introduction of other environmental
policies, like carbon emissions societal constraints
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Conclusion

> We developed a mean field game approach for electricity market dynamics,
incorporating endogenous fuel prices and many technical features

> We proved the existence of an equilibrium with unique electricity and fuel prices

» Without environmental policies, gas plants meet demand

» The carbon tax accelerates the coal phase-out by 2030, promotes renewable energy,
but leads to higher long-term electricity prices.

> Renewable subsidies initially support wind energy but become ineffective beyond a
certain threshold and fail to push coal out of the market, leading to more carbon
emissions.
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Thank you for your attention

Contact: alicia.bassiere@centralesupelec.fr

Website:
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Pricing equations



Fuel and price equations

» Fuel price solving:
oW (PP, PE) + copWt (PP, PE) = o (P) (4)

» Fuel consumption:

V() = 30 S n (e ) i (F — e — -2 (9

i:k(i)=k j=1

» Price formation



Agents production processes

> Renewable capacity factor for agent j with technology i:
ds! =K (@ — shydt +3\/sl(1 — shaw!, sl =5;
» Random cost component for agent j with technology i:
dzl = k(0" — Z))dt + o'\ /Zldw!,  Z) = z;

» The agents



Agents maximization programs ()

» Conventional producers instantenous gain function:

/0 ) (p - C?(é)) d€ = G (p —e)Pf + P + Zij)

» Conventional cost function for agent j with technology i:

T i i
E / e PN (t — ) (Gi <Pt - ﬁek(,)Pf - f,-p’t‘(’) _ Z{!) - /{/) dt

1

Market gains

_Ke (/))”:/')Tl_‘_ Rl.e—(/)-i-"/i)Tz

Entry cost Exit scrap. value

» Game of entry and exit



Agents maximization programs (l1)

» Renewable supply function for agent j with technology i

T . ~
E / e PN (t— 1) (PS: — ki) dt — Kie ()7 4 et (9)

T1

Market gains Entry cost Exit scrap. value

» Game setting



Central planner maximisation programm

N o
max { Z E [/ e PNi(t — 71,) (Gi(+) — ki) dt — Kie= (P 4 K/e_(p+7f)72v’]
i=0

(7—177—2 6[0 T]M+M T1.i
Conventional gains

+MZNE[

T2,j . ~
/ efpt)\j(t — 7'17]) (Ptsjt — Hj)dt — Kjef(/)+q’/)ﬁ‘f + Kje(ern”)Tz‘f]
j=0 m

1

Renewable gains

T2, K -
/n~ e "(Go(Pt) — &/D/t )+Z ox(PF) ] . (10)

Baseline gains ~ Consumer costs k=1 Fuel producer gains

+

» Game Setting



Infinitesimal Generator: Conventional

» Conventional cost function process:
dzl = k(0" — Z0)dt + &'\ /Zldw!,  Z) =z
» Associated Infinitesimal generator for a C? u function:

ou 1 O*f

Liju =K — )5+ 5 (5) 73

» The agents

(11)



Infinitesimal Generator: Renewable

» Conventional cost function process:

dzl = k(0" — ZV)dt + &'\ /Z0dw!,  Z) =z
» Associated Infinitesimal generator for a C? u function:

o ou 1, 0%u
= kg N = (i S Nt
Liju=K(0' —z) 95 + 2(6 )s(1—s) 552



Fuel and price equations

» Fuel price solving:
Uk (P’t’, Pf) + CopWk (P‘;P, Pf) _ (Pf) (13)
» Fuel consumption:

vE(FEP) = X ZA("“T>1“>#’QU (P —fewyP* — P+ —2f) . (14)

i:k(i)=k j=1



Introduction of measures

> 2 classes of population for agent of type i

> : plants which the decision to build has not been taken yet
> : plants under construction or operational

> Occupation Measure (m;(t))
> Purpose: Represents the distribution of active agents over their state space at any given
time
» Entry Measure (1)
» Purpose: Captures the rate and conditions of new market entrants over time
> Exit Measure (1)
» Purpose: Quantifies the rate at which agents withdraw from the market



Mean-Field formulation |

m(da, dx) = / vi(dd, dx)E [3(d’ + t, Z})(da, dx)] (15)
A><O,'
1i(dt, da, dx) = / vi(da', dxX)E [6(rh, 5 + o, Z..)(dt, dar, dx)] (16)
AXO;

vi(dt, da, dx) = vj(da, dx)d(dt) + pi(dt, dx)do(da) (17)



Mean-Field formulation Il

fi(dt, dx) = / D (dx')E [8(71, 2L, )(dt, dx)]
O;
() = | 2i(a)E [52)(00)]
O;
Di(dt, dx) = D} (dx)do(dt)

> Linear programming



MFG equations: price equations system

» Conventional supply function:
Fk PE,P" / H(da, dx)\i(a)F; ( PE — fie,PC — fiP — x (21)
t( Z AxO; < >

» Fuel consumption is therefore:

k E pk) __ i . . E_ ¢ C _ fpk
v (P,P)_ Y /A _ mi(da, )X (a)fF (P fie PS — fP x) (22)

> Renewable supply function:
N-+N .
Re= > /  mi(da, dx)\i(a) (23)
irk(i)=k 7 AXO



MFG equations: optimization functionals

» Conventional gain function:

/ mi(da, dx)e™"*)i(a) (ch,- (pf — fieypPS — FPLOD — X)
[0,T]x AxO;
+CopGi (P A Y AL x) —~ ni> dt

_KI/ /,)/I(dt, da, dX)e_(p'i"Yi)t + RI/ ,U:I(dt, da, dX)e_(p+,yi)t
[0,T]><.A><6,‘ [07T]><A><6,‘



MFG equations: optimization functionals

» Renewable gain function:

/ mi(da, dx)e "' \i(a) ((cpP} + copPP) x — ;) dt

[0,T]xAXxO,

_KI/ /I:[/’(dt, da, dX)e_(p+'Yi)t + RI/ ,U/(dt, da, dX)e_(p-i_’Yi)t
[0 T]XAX@ [0 T]XAX@

» Linear programming



MFG equations: constraints |

/ u(t, a,x)vi(dt, da, dx) + / (8u + L,-u) mi(da, dx)dt
[0,T]xAX0; [0,T]xAx0; \ Ot

= / u(t, a,x)pi(dt, da, dx)
[0,T]xAXO;

/ u(t, x)o;(dt, dx) + / <8u + Z,-u) it (dx)dt
[0,7T]x0; [0,7]x0; \ Ot

- / u(t, X)ju(dt, d)
[O,T]XO,'



MFG equations: constraints Il

Di(dt, dx) = D} (dx)do(dt)

vi(dt, da, dx) = vl (da, dx)do(dt) + fi(dt, dx)do(da)

» Linear programming



Nash equilibrium equations

» Denote R;(7}, v}) the class of n-uplets:
<//li7 (mi)OStsrvuia (m£)0§t§T> € Mi X Vi X Mi X Vi

with forallu € ¢;*2 ([0, T] x A x O;) satisfies



Nash equilibrium equations

The class satisfies the constraints:

/ u(t,a,x)v'(dt,da, dx) + / { + L u} mi(da, dx)dt
[0,TIxAXO; [0,T]xAxO;

/ u(t,a,x)u'(dt, da, dx)(11)
[0,T]x AXO;

{0 + L u} Mk (da, dx)dt
[0,T]x AxO; ot

:/ u(t, a, )i (dt, da, dx)
[0,T]x AXO;

/ u(t,a,x)'(dt, da, dx) +
[0,TIxAX O,

Pi(dt, dx) = D4 (dx)do(dt)

vi(dt, da, dx) = vi(da, dx)do(dt) + fii(dt, dx)do(da)



Nash equilibrium theorem

> Assume that the initial measures satisfy
/ In(l+|x|)z96(dx)+/ In(1 + |x|)v4(da, dx) < oo. (27)
(’),— AXO,’

> Assume that the peak demand DP, the off-peak demand D°? and the carbon price P¢
have finite variation on [0, T]

» Existence of a relaxed Nash equilibrium

» Nash equilibrium



Mean-Field formulation of the central planner

T N+N )
J(m) —/ e min  Gim,P)dt— Z/ mi(da, dx)e " \i(a)k;
0 Pe[0,P*]2xRA 5 [0,T]x AXO;
N-+N N+N
— ZK, / Al(dt, dx)e (P 4 ZK, / 1l (dt, da, dx)e~ (Pt
T]><O 0 T]><A><O

» Nash equilibrium



Numerical resolution: the fictitious play algorithm

> For each group of technologies:
1. Initialize with a "guess" on the strategy
2. Describe optimal strategies for a representative agent as a function of the population
distribution
3. Population distribution update in case of strategy profitability
4. Repeat until stationarity of the strategy (no more profitable deviation)

» Numerical algorithm



Numerical resolution : The fictitious play algorithm

1. Initialization:

(ﬁi,07 (ﬁv’;(’) L (mi,o) ) eER;, i=1,....,N+N
0<t<T 0<t<T

2. Compute prices (Pip, Ptop, Pt1-~-PtK)0§tg

3. Optimize the agents program to get best responses
4. Measures update:

Y (m"J) i (mi,j) - (ﬁ,i,/) oij <mi,j>
(H AN ogtgr”u "\ Jo<e<t AN ogtgr’u P\ Jo<e<t
~ij—1 [ aij—1 ij—1 ij—1
+(1—g)(aY (m ) : (m
( J) H ’ t OSI‘ST’M ’ t 0<t<T

» Linear programming
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