

Octobre 2024

Modélisation de l'équilibre offre-demande – Présentation du simulateur Antares

Jean-Marc JANIN jean-marc.janin@rte-france.com

contact@antares-simulator.org https://antares-simulator.org

Sommaire

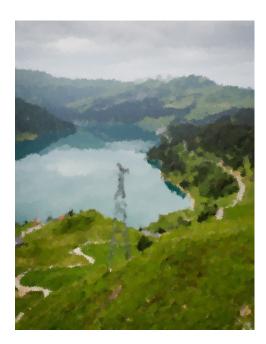
l.

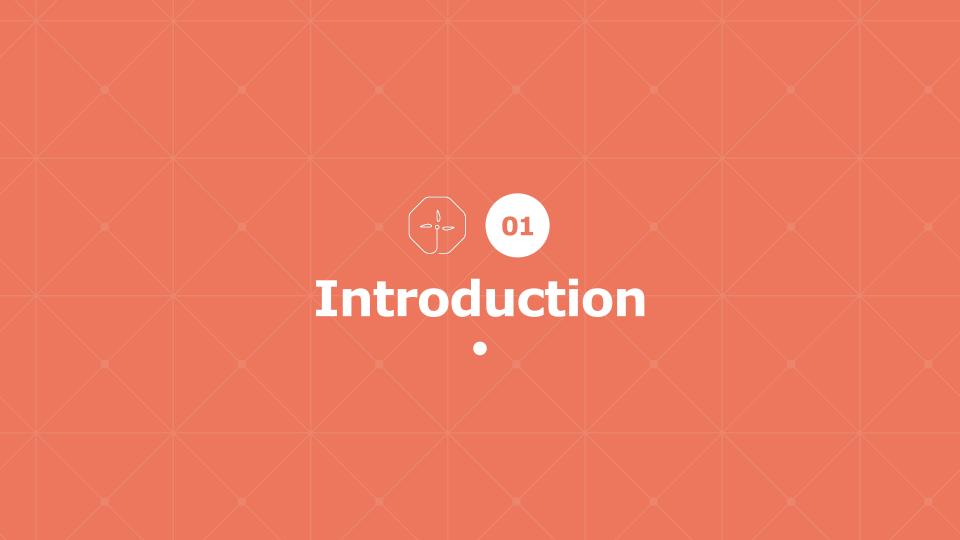
Introduction

Qu'est-ce que l'équilibre offre-demande?

2

Comment simuler l'équilibre offre-demande?


3.

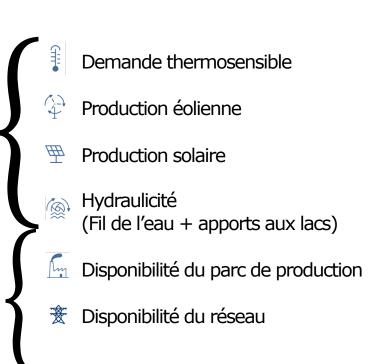

Formulations mathématiques

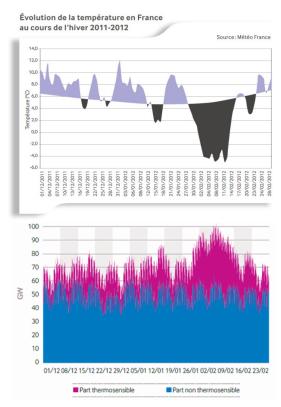
4.

Exemple d'étude :

Futurs Energétiques 2050

L'équilibre production = consommation ± échanges

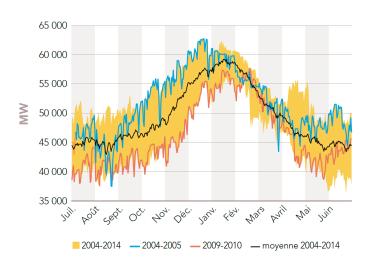




Un équilibre impacté par de nombreux aléas

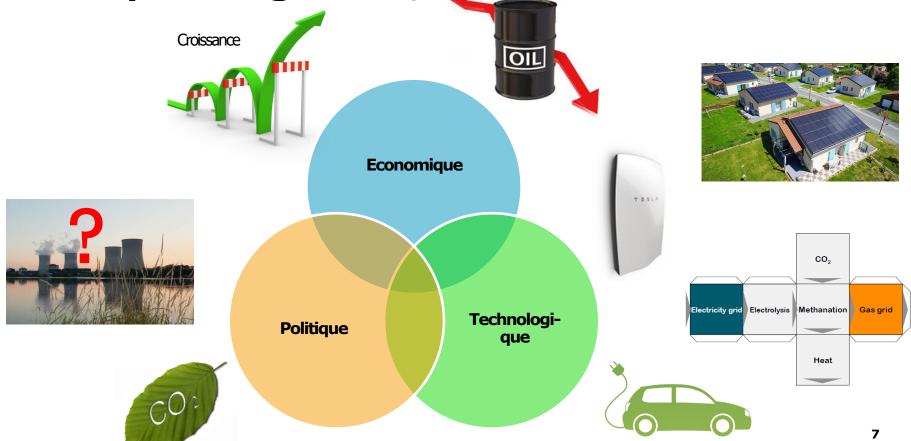
Aléas majoritairement climatiques

Aléas majoritairement industriels



Exemple 1: évolution de la consommation électrique pendant la vague de froid de Février 2012

Un équilibre impacté par de nombreux aléas


- Demande thermosensible
- Production éolienne
- Production solaire
- Mydraulicité (Fil de l'eau + apports aux lacs)
- Disponibilité du parc de production
- * Disponibilité du réseau

Exemple 2: Historiques de disponibilité du parc nucléaire français sur la période 2004-2014

A plus long terme, un contexte incertain

Un besoin d'Anticiper l'évolution de l'équilibre entre offre et demande électrique

Alerter sur les risques pesant sur la **sécurité d'approvisionnement** Eclairer le débat public sur la transition énergétique

Anticiper les flux d'électricité européens dans les décennies à venir Mesurer **l'impact environnemental** d'une
politique énergétique

Explorer l'impact sur les activités de RTE de **scénarios prospectifs en rupture**

Analyser la pertinence économique d'un projet d'interconnexion

Un exemple d'étude, le Bilan Prévisionnel

- Etudier le risque que le parc de production ne permette pas de satisfaire la demande sur un horizon de 1 à 5 ans
- Explorer les évolutions du système énergétique européen à l'horizon 2035

Ce que l'on veut mesurer

Des indicateurs d'équilibre :

nombre d'heures de défaillance, probabilité de défaillance, énergie nonfournie, gaspillage, ...

Des indicateurs réseaux :

flux d'énergies, volumes échangés, congestions, ...

Des indicateurs sur la production :

volume d'énergie produite par filière, émissions de CO2, centrales sollicitées (qui produit ? Quand ?), ...

Des indicateurs économiques :

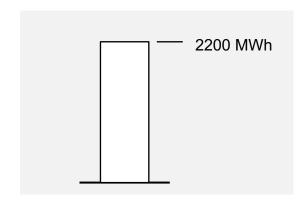
coût d'exploitation, coût marginal de production à l'équilibre (prix de marché), valorisations, ...

Comment simuler l'équilibre offre-demande?

Une première approche simple

Un parc de production

(disponibilités et prix de marché pour une heure donnée)


Nucléaire 1: 900 MW, 14 €/MWh **Nucléaire 2**: 900 MW, 16 €/MWh

CCG: 300 MW, 45 €/MWh

Hydraulique : 300 MW, 48 €/MWh

Eolien : 300 MW, 0 €/Mwh

Une prévision de consommation

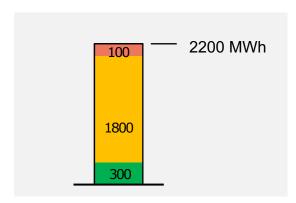
CCG : Cycle Combiné Gaz

Une première approche simple

Un parc de production

(disponibilités et prix de marché pour une heure donnée)

Nucléaire 1 : 900 MW, 14 €/MWh Nucléaire 2 : 900 MW, 16 €/MWh


CCG: 300 MW, 45 €/MWh

Hydraulique : 300 MW, 48 €/MWh

Eolien: 300 MW, 0 €/Mwh

CCG: Cycle Combiné Gaz

Une prévision de consommation

Les moyens de production sont sollicités par ordre de prix croissant

Des contraintes techniques de fonctionnement

Par exemple:

Une contrainte de Pmin (puissance minimale stable de fonctionnement)

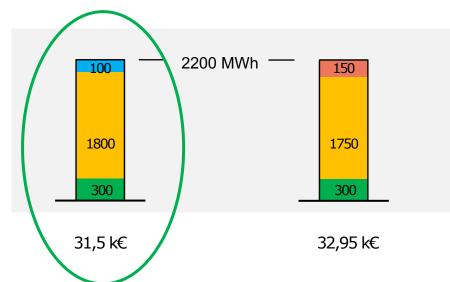
Nucléaire 1: 900 MW, 14 €/MWh **Nucléaire 2**: 900 MW, 16 €/MWh

CCG: 300 MW, 45 €/MWh

Hydraulique: 300 MW, 48 €/MWh

Eolien: 300 MW, 0 €/Mwh

Pmin

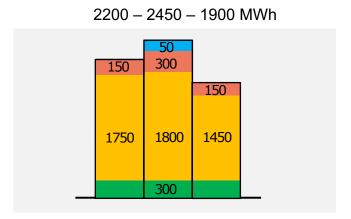

300 MW

150 MW

0 MW

0 MW

La solution la moins chère est celle retenue par le marché.



Des contraintes techniques de fonctionnement

Par exemple:

Une contrainte de temps minimum de fonctionnement

	Pmin	Dmin
Nucléaire 1 : 900 MW, 14 €/MWh Nucléaire 2 : 900 MW, 16 €/MWh	300 MW	24 h
CCG : 300 MW, 45 €/MWh	150 MW	3 h
Hydraulique : 300 MW, 48 €/MWh	0 MW	0 h
Eolien : 300 MW, 0 €/Mwh	0 MW	0 h
	Nucléaire 2 : 900 MW, 16 €/MWh CCG : 300 MW, 45 €/MWh Hydraulique : 300 MW, 48 €/MWh	Nucléaire 1 : 900 MW, 14 €/MWh 300 MW Nucléaire 2 : 900 MW, 16 €/MWh 150 MW CCG : 300 MW, 45 €/MWh 150 MW Hydraulique : 300 MW, 48 €/MWh 0 MW

Les produits du marché permettent de prendre en compte ces contraintes techniques de fonctionnement

Des contraintes de fonctionnement

Exemples de contraintes techniques de fonctionnement couplant différents pas de temps:

- Puissance minimale stable
- Durée minimale de marche/d'arrêt
- Rampes
- Durée minimum de palier
- Respect de contraintes de stocks (hydraulique, démarrage, effacement)
- Cycles de stockage/turbinage

De nombreuses contraintes techniques (ou d'exploitation) complexifient la façon dont on construit – de façon optimal – l'empilement des moyens de production.

Des zones de marchés couplées par des possibilités d'échanges d'énergie

Zone 1

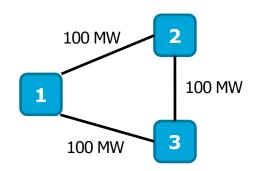
Nucléaire 1: 900 MW, 14 €/MWh **Nucléaire 2**: 900 MW, 16 €/MWh

CCG: 300 MW, 45 €/MWh

Hydraulique : 300 MW, 48 €/MWh

Conso: 1800 MWh

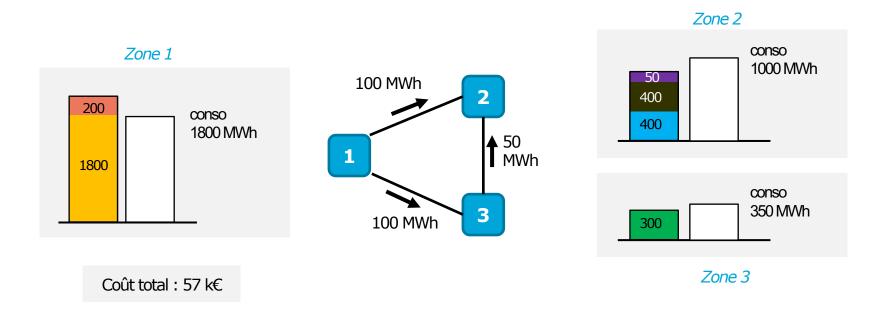
Zone 2


Hydraulique : 400 MW, 5 €/MWh **Charbon** : 400 MW, 35 €/MWh **TAC :** 200 MW, 100 €/MWh

Conso: 1000 MWh

Zone 3

Eolien : 300 MW, 0 €/Mwh


Conso: 350 MWh

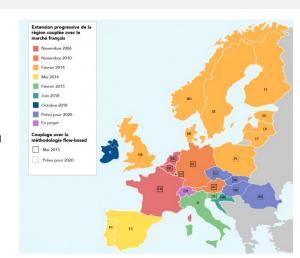
TAC: Turbine à Combustion

Des zones de marchés couplées par des possibilités d'échanges d'énergie

Des zones de marchés couplées par des possibilités d'échanges d'énergie

En Europe:

quelques zones de marché par pays (Norvège, Suède et Italie)


Ou une zone de marché par pays (le reste)

Actuellement, couplage du marché sur : Allemagne, Autriche, Belgique, Danemark, Espagne, Estonie, Finlande, France, Italie, Lettonie, Lituanie, Luxembourg, Norvège, Pays-Bas, Pologne, Portugal, Royaume-Uni, Slovénie et Suède.

Les capacités d'échanges sont déterminés

De façon bilatéral (approche NTC – Net Tranfer Capacity)

ou **conjointement au sein d'une région** (approche flow-based, région France – Belgique – Luxembourg – Allemagne – Pays-bas)

Les prix?

Que reflètent les prix proposés par les producteurs sur la bourse de l'énergie?

Les coûts variables de production

- coûts de combustible
- coûts du CO²

La valeur d'usage d'énergies à stocks limités (ex: la valeur d'usage d'1m³ d'eau correspond à l'espérance du gain que l'on peut réaliser en la turbinant <u>dans le futur</u>)

Une (éventuelle) stratégie d'acteur

Ils ne reflètent pas les coûts fixes d'investissement et d'exploitation (personnel, maintenance) qui sont – aux échéances court-terme de la bourse – des coûts échoués

Exemples

Nucléaire 1 : 14 €/MWh

Nucléaire 2 : 16 €/MWh

CCG: 45 €/MWh

Hydraulique: 48 €/MWh

Hydraulique: 5 €/MWh

Charbon: 35 €/MWh

TAC: 100 €/MWh

Eolien : 0 €/MWh

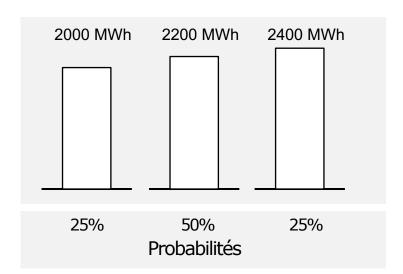
La prise en compte des aléas

Quel est l'espérance (la moyenne) des coûts de production pour satisfaire la prévision de consommation suivante ?

Un parc de production

(disponibilités et prix de marché pour une heure donnée)

Nucléaire 1 : 900 MW, 14 €/MWh Nucléaire 2 : 900 MW, 16 €/MWh


CCG: 300 MW, 45 €/MWh

Hydraulique : 300 MW, 48 €/MWh

Eolien : 300 MW, 0 €/Mwh

Scénarios de consommation

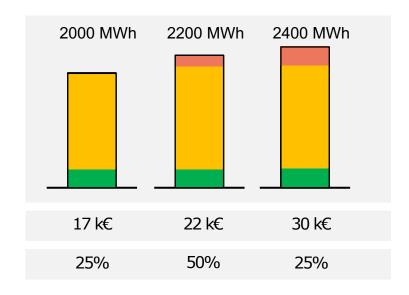
Pour un pas de temps

La prise en compte des aléas

Quel est l'espérance (la moyenne) des coûts de production pour satisfaire la prévision

de consommation suivante?

Un parc de production


(disponibilités et prix de marché pour une heure donnée)

Nucléaire 1 : 900 MW, 14 €/MWh Nucléaire 2 : 900 MW, 16 €/MWh

CCG: 300 MW, 45 €/MWh

Hydraulique : 300 MW, 48 €/MWh

Eolien: 300 MW, 0 €/Mwh

Coûts de production

Probabilités

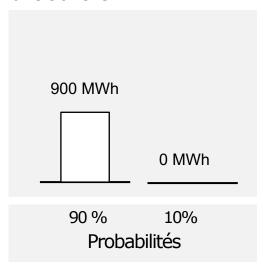
Une combinaison d'aléas

Quelle est la probabilité d'avoir de la défaillance (i.e. une part de la consommation non desservie) ?

Un parc de production

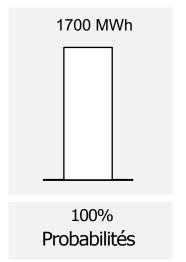
(disponibilités et prix de marché pour une heure donnée)

Nucléaire 1 : 900 MW, 14 €/MWh Nucléaire 2 : 900 MW, 16 €/MWh


CCG: 300 MW, 45 €/MWh

Hydraulique : 300 MW, 48 €/MWh

Eolien: 300 MW, 0 €/Mwh


Nucléaire 1 & Nucléaire 2

Distribution de disponibilité pour une tranche

Scénarios de consommation

Pour un pas de temps

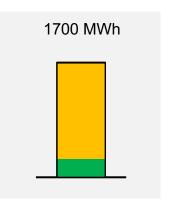
Une combinaison d'aléas

Quelle est la probabilité d'avoir de la défaillance (i.e. une part de la consommation non desservie)?

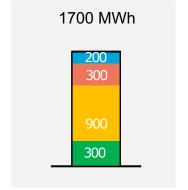
Capacité nucléaire 1 900 MW

Capacité nucléaire 2 900 MW

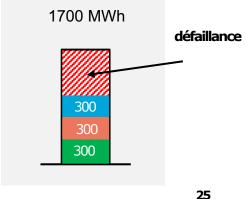
Probabilité


 $90\% \times 90\% = 81\%$

CCG: 300 MW

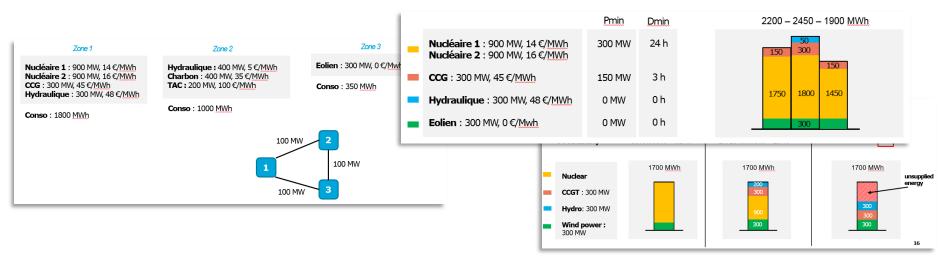

Hydro: 300 MW

Eolien: 300 MW


0 MW 900 MW 900 MW 0 MW

 $2 \times 10\% \times 90\% = 18\%$

0 MW


0 MW

Et maintenant?

En combinant réseau et contraintes de fonctionnement

Comment calculer l'empilement qui permet de répondre à la demande au moindre coût ?

- Sur un périmètre géographique large (l'Europe)
- Pour une période temporelle longue (au moins un an)
- Soumis à un ensemble d'aléas sur la consommation, les productions ENR intermittente, la disponibilité du parc, les apports hydrauliques ...

Formulations mathématiques

Une discipline phare pour la simulation de l'EOD :

L'optimisation

Consiste à rechercher, sur un ensemble, un élément qui minime ou maximise une fonction.

Par exemple

Le problème suivant a pour **variable** $x \in \mathbb{R}^n$

$$\begin{cases} \min_{x} c^{T} x \\ \sum_{i=1}^{n} x_{i} = l \\ 0 \le x \le \overline{p} \end{cases}$$

Et consiste à chercher la combinaison x^* de \mathbb{R}^n qui minimise c^Tx et vérifie les deux **contraintes** $\sum_{i=1}^n x_i = l$ et $0 \le x \le \overline{p}$, pour $c \in \mathbb{R}^n$, $\overline{p} \in \mathbb{R}^n$ et $l \in \mathbb{R}$ donnés.

Il s'agit d'une forme très épurée du problème de simulation de l'équilibre offre-demande avec :

c les coûts proportionnels de fonctionnement

 \bar{p} les capacités des moyens de production

l la consommation

 \boldsymbol{x} la production de chacun des moyens de production

Un problème plus complet

Fonction objectif: minimisation des coûts de production

$$\min \sum_{t} \left[\sum_{g} P_{g,t}^{th} c_{g,t}^{lin} + c^{uns} P_{t}^{uns} + c^{exc} P_{t}^{exc} \right]$$

Contraintes:

Equilibre entre productions et consommation

$$\sum_{g} P_{g,t}^{th} + \sum_{h} P_{h,t}^{hy} + p_{t}^{res} + P_{t}^{uns} = load_{t} + P_{t}^{exc}, \ \forall t$$

Bornes sur la production thermique $0 \le P_{g,t}^{th} \le p_g^{max}, \ \forall g,t$

Bornes sur la production hydraulique $p_h^{min} \leq P_{h,t}^{hy} \leq p_h^{max}$, $\forall h,t$

Energie hydraulique hebdomadaire limitée par une contrainte de stock $\sum_t P_{h,t}^{hy} \leq e_g$, $\forall h$

Positivité des variables de défaillance et de sur-production $P_t^{exc} \geq 0$, $P_t^{uns} \geq 0$, $\forall t$

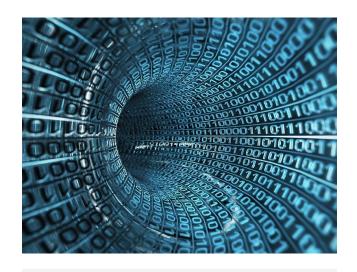
Indices

- t Pas de temps
- g Groupes thermiques
- h Groupes hydrauliques

Variables

- Pth_{g,t} Production des groupes thermiques
- Phy Production des groupes hydrauliques
- P_t^{uns} Energie non fournie P_t^{exc} (unsupplied) et en excès

Comment le résoudre ?


Sur des cas concrets d'études

Les problèmes d'optimisation résolus sont de taille conséquente

(ex. 100 zones, 1000 groupes de production, 168 pas de temps -> environ 200 000 variables).

Les problèmes d'optimisation linéaire sont résolus par des méthodes numériques

L'optimisation linéaire a de nombreuses applications dans les secteurs industriels. Les méthodes de résolutions – implémentées dans de nombreux « solveurs » – sont bien maîtrisées et permettent de trouver l'optimum global de problèmes à plusieurs centaines de milliers de variable.

Programmation linéaire continue Algorithme du simplexe, méthode de points intérieurs

Les sources de complexité en optimisation

Les problèmes linéaires, mais de très (très) grande taille

L'optimisation pluriannuel des investissements (plusieurs 10aine de milliard de variables)

0 1 Les variables entières

Nécessaires à la description des contraintes techniques de fonctionnement.

exemple : variable binaire décrivant l'état – en marche (1) ou à l'arrêt (0) d'un groupe de production

- Complexifie significativement la résolution des problèmes d'optimisation
- Rend les temps de résolution très instables

\bigwedge

Les non-linéarités

Rendements des centrales thermique non linéaires

Rendement des groupes hydrauliques dépendant de la hauteur d'eau dans le lac

Description des lois physique de répartition des flux

- Rend la recherche de <u>l'optimum global</u> du problème compliqué/longue
- La plupart des méthodes de résolution se contente d'un optimum local

→ De nombreux travaux (notamment de R&D) sur la construction des modèles et leurs méthodes de résolution

Focus sur les variables entières ou binaires des unités thermiques

0 1

Quelles sont ces variables?

- Variables entières décrivant le nombre d'unités en marche d'un ensemble homogène de groupes de production (on appelle « duster » cet ensemble),
- Variables entières décrivant le nombre d'unités du cluster participant au réglage primaire,
- Variables entières décrivant le nombre d'unités du cluster participant au réglage secondaire, ...

Comment le nombre d'unités en marche impacte le problème EOD ?

- A chaque démarrage d'unité on paye un coût de démarrage
 Ninimisant les démarrages, cela revient à payer les incréments du nombre d'unités en marche.
- Une durée minimale (DMIN) est à respecter entre 2 changements d'état (démarrée ou arrêtée) d'une unité
 Plusieurs formulations possibles de cette contrainte, sachant que la première unité qu'on peut arrêter c'est celle qu'on a démarré depuis plus longtemps
- Une unité démarrée produit entre PMIN et PMAX
 => On note une discontinuité dans la plage autorisée de production d'une unité, celle-ci étant : {0} U [PMIN, PMAX]

Comment les autres variables impactent le pb EOD ?

- Une unité qui participe au réglage primaire fournira une demi-bande RP de réglage
 - => Cette unité est nécessairement démarrée
 - => La plage autorisée de production est : [PcMIN, PcMAX] avec : PcMIN = PMIN + RP et PcMAX = PMAX - RP
- Une unité qui participe au réglage primaire et au réglage secondaire fournira 2 demi-bandes RP et RS de réglage
 - => Cette unité est nécessairement démarrée
 - => La plage autorisée de production est : [PcoMIN, PcoMAX] avec : PcoMIN = PMIN + RP + RS et PcoMAX = PMAX - RP + RS

Résolution du problème :

- Résolution d'un Problème Linéaire en Nombres Entiers (PLNE ou MILP en anglais)
 - => Méthode de type « branch and bound » permettant d'obtenir « l'optimum absolu »
 - => ...mais, temps de calcul incertain, surtout pour nos pbs qui présentent un optimum très plat (beaucoup de solutions proches de l'optimum)
- · Résolution en 2 étapes de 2 Problèmes Linéaires Continus
 - => 1ère étape : pb relaxé, on accepte les fractions d'unités en marche
 - => projection des variables entières sur des valeurs entières
 - => 2ème étape : fixation des variables entières puis résolution du pb

Structure d'information et décomposition temporelle du problème

Qu'appelle-t-on structure d'information?

- On appelle structure d'information la façon dont sont révélés les aléas au fur et à mesure de la résolution de chacun des problèmes
- Quand on résout un pb EOD, on se place en début de période sur laquelle on veut calculer nos différentes variables de décision
- Dans la réalité, la plage d'incertitude de chaque aléa vaut 0 à cet instant-là puis augmente avec le temps, on parle de « Cône d'incertitude »
- Pour chaque aléa, le « Cône d'incertitude » s'élargit plus ou moins vite en fonction de la prévisibilité de l'aléa

Quelle structure d'information pour quelle méthode de résolution du problème EOD ?

2 grandes familles de résolution de problème existent :

- · Les méthodes « full » stochastiques :
 - On résout le plus souvent par Programmation Dynamique Stochastique (SDP en anglais) un unique pb avec recombinaison possible des aléas
 - => Cette méthode offre bcp de liberté sur les structures d'information
 - => ... mais on doit faire face à la malédiction de la dimension des aléas
- Les méthodes Monte-Carlo (ANTARES) :
 - On construit des scénarios déterministes qu'on révèle et résout par plage
 - => On parle de pb multi-étapes avec des plages de résolution hebdo
 - => La structure d'information la plus simple alors est de révéler les aléas sur toute la semaine et rien au-delà, on parle de structure Hazard-Decision hebdomadaire (weekly HD)

Quelles hypothèses sous-jacentes à la structure « weekly-HD » et quels problèmes génère-t-elle ?

Hypothèses de la structure « weekly-HD » :

- On suppose une bonne prévisibilité des aléas à l'horizon de la semaine (assez réaliste pour les aléas dimatiques, plus discutable pour les aléas industriels)
- On crée artificiellement des « sauts » hebdo de connaissance des aléas

Problèmes associés :

- La discontinuité hebdo induite suppose une criticité plus faible du pb EOD lors des ruptures
 On réalise ces ruptures hebdo le week-end à 0h
- On ne sait pas prendre en compte directement les contraintes qui couplent les semaines

Quelles sont les contraintes qui couplent les semaines et comment les traiter?

Contraintes dynamiques à l'interface entre 2 semaines :

- Il s'agit par exemple de la contrainte de DMIN des unités thermiques.
- => On peut faire « chevaucher » les plages de résolution ou introduire une « fausse cyclicité »

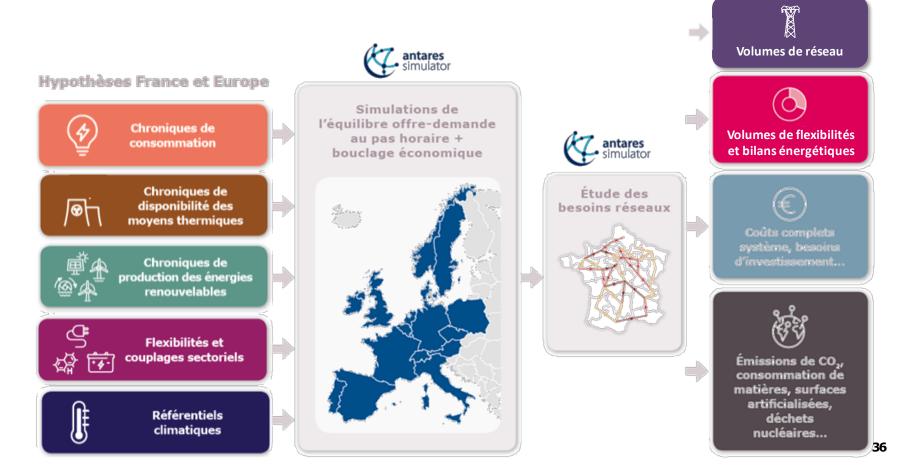
Contraintes de stock Long Terme (LT) ou cibles saisonnières voir annuelles

- On parle de contrainte de stock LT lorsqu'un stock se vide ou se remplit en plusieurs semaines
- On parle de cibles saisonnières lorsqu'on gère un quota sur une longue période (tirage TEMPO sur l'hiver, quota d'émission sur l'année, ...)
- => Des modèles auxiliaires construisent une politique de gestion du stock ou des cibles fournissant des quantités hebdomadaires ou des prix (Valeurs d'Usage) qui guident la résolution hebdomadaire

Exemple d'application : Futurs Energétiques 2050

La problématique générale de l'étude

Les accords de Paris fixent à 2050 l'horizon de la neutralité carbone.


Les Futurs énergétiques 2050 étudient à quoi pourrait ressembler le système électrique français permettant d'atteindre la neutralité carbone et la trajectoire pour y parvenir.

L'étude propose plusieurs axes d'analyse :

- Comment fonctionnerait le système électrique ?
- Combien coûtera-t-il?
- Quel impact environnemental?
- Quels sont les préreguis pour atteindre la neutralité carbone ?
- Quelles sont les options ? Les paris technologiques ?
- ..

Modélisation du système énergétique

Conclusions – quelques exemples d'enseignements

Ces enseignements sont le résultat de différents scénarios de production et de consommation, confrontés au simulateur Antares qui permet de quantifier les enjeux :

- 1. La consommation d'énergie va baisser mais celle d'électricité va augmenter pour se substituer aux énergies fossiles
- 2 Atteindre la neutralité carbone en 2050 est impossible sans un développement significatif des énergies renouvelables
- 3. Construire de nouveaux réacteurs nucléaires est pertinent du point de vue économique, a fortiori quand cela permet de conserver un parc d'une quarantaine de GW en 2050
- 4. Les moyens de pilotage dont le système a besoin pour garantir la sécurité d'approvisionnement sont très différents selon les scénarios.

Il existe un intérêt économique à :

- accroître le pilotage de la consommation,
- développer des interconnexions et le stockage hydraulique,
- installer des batteries pour accompagner le solaire.

Au-delà, le besoin de construire de nouvelles centrales thermiques assises sur des stocks de gaz décarbonés (dont l'hydrogène) est important si la relance du nucléaire est minimale et il devient massif – donc coûteux – si l'on tend vers 100% renouvelable