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1. Brief description of the 
négaWatt scenario
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By 2050, final energy halved, primary energy divided by 3
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Source : Zenon Research, 2023. Beyond primary energy

https://assets-global.website-
files.com/62b9fb2aad2275b3dcfe568b/64a6e7c8bf3662ad7a
43a57f_Rapport_Efficacite%CC%81_Energe%CC%81tique_V3.

pdf

ß World, 2014

Ambitious? Yes but 2/3 of energy is currently wasted!



Climate neutrality by 2047 (territorial emissions)  & 2050 (footprint)
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We model the supply of electricity, hydrogen, 
methane and (partly) heat networks

Energy carriers 
modelled
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In transportation, oil is 
phased out thanks to:
- sufficiency
- efficiency
- fuel switch
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Space heating: insulation and partial fuel switch
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2. The EOLES-elec model 
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Simultaneous optimization of dispatch and 
investment
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Primary and secondary reserves

𝑄! = installed available capacity of technology 𝑖
𝐸!,# = energy generation of technology 𝑖 at hour 𝑡 (can be negative for storage)
𝑑# = energy demand at hour 𝑡
𝑓𝑐!  = annualized fixed cost

𝑣𝑐!  = variable cost
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Implementation: Python, Pyomo optimization 
package, Gurobi solver
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Main input data and assumptions

• Single node (continental France), no interconnection
• Inelastic demand
• Linear programming
• Full information
• Cost of capital: 4%/year
• Hourly wind and PV capacity factors: NASA MERRA-2
• Hydro: coupling with Orchidee forced by SAFRAN data (Baratgin, 2024)
• Costs & energy losses: RTE, Futurs énergétiques 2050, except:

• Onshore wind : Ademe (2019)
• Hydropower, CHP: JRC (2014, 2017)
• Renewable gas: Ademe, JRC
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• Renewables.ninja
• MERRA-2 & bias correction: Pfenninger and Staffell, Energy, 2016
• Corrélation with RTE observations : 0.98 (onshore wind) & 0.97 (PV)
• Source: Moraes et al., Applied Energy, 2018

• Implementation
• Windpower curve: Vestas v110 (for onshore)
• 19 years of hourly data (2000-2018)
• Locations for offshore wind: projected and existing sites
• Locations for onshore wind & PV : one site per département, proportional to capacity in 2017
• Wind yearly capacity factor adjusted to négaWatt assumptions: 30%, 40% (fixed offshore), 45% (floating offshore)

Onshore wind and PV capacity factors 
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Consistency between thermo-sensitive 
demand, wind, PV and hydro 
• Same time period (hourly, 2000-2018)
• Wind & PV: MERRA-2
• Hydro: SAFRAN
• Heating needs: 

• Total power consumption for heating: négaWatt
• Daily profile: linear function (heating degree-days) beyond a threshold varying by 
région (Staffell et al., 2023)

• Intra-day profile: Staffell et al. (2023)
• Cooling needs: 

• Temperature: MERRA-2 (Staffell et al., 2023)
• Daily profile: linear function (heating degree-days) beyond a threshold, 700 MW/°C 

(RTE, 2020, 2024)
• Intra-day profile: RTE (2015)
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Other constraints

• Primary reserves: as today
• Secondary reserves: ENTSO-E (increases with demand, PV & wind)
• Load shifting: 
• up to 6h, 
• 7 GWh (1.89∗10−5 GWh per GWh of yearly demand; RTE 2022)

• CO2 availability constraints for power-to-methane
• Biomass availability constraints
• Maximum capacities: négaWatt scenario
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3. EOLES-elec compared to other open-source 
energy system optimization models
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4. Results



Methodology

• Demand not met at every hour à EOLES cannot run
• Inclusion of a “dummy” dispatchable technology (very costly à last resort)
• Used only 3.2h/yr. in average 
• à the négaWatt scenario almost complies with the failure criterion of the 

Energy Code (3h/yr. in average) even without interconnections
• Adding PHS as in RTE 2022 (8.5 GW instead of 6.2) is not enough
• Comparison of four realistic variants, meeting demand every hour 

• More batteries
• More hydrogen turbines
• More natural gas turbines
• Optimal mix of the three above
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Load shifting
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Results with the “dummy” dispatchable
technology

• Lack of dispatchable power: 7.8 GW
• Lack of reserves: 5.4 GW
• Total: 13.2 GW (+37% wrt. 
négaWatt scenario)

Week with the largest use of the 
dummy tech. (Jan–Feb 2006) à
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Comparison of 4 realistic variants, meeting demand every 
hour

Optimal mix:
112 GW of PV vs. 138 GW in the négaWatt scenario
Reserves: ½ Batteries & PHS
à 5.5 bn. €/yr. saved

Methane variant: +2 TWh of pyrogasefication 26



5. Algorithm choice and computational speed

Barrier (Interior point) + crossover

Solution Midface Basic

Approximate 
computational time 
for 5 year at hourly 
resolution

700s 1600s

Approximate 
computational time 
for 19 years at hourly 
resolution

2-3 hours
(~25 MegaBytes, 

3 cores, Intel Xeon Gold 
6130 CPU @ 2.10GHz)

> 6 days

Interior point : much faster for sparse and degenerate problems, but midface solution
Vs.
Simplex : provides a basic solution, better for dense problems

A crossover step after the interior point method allows to recover a basic solution …

… but it is not worth the cost !

Gurobi choses interior 
point for our problem



6. Conclusion and discussion

• The négaWatt scenario ensures security of supply, as defined by the Energy Code
• PV could be reduced from 138 to 112 GW
• Is it worth adding 13 GW of dispatchable power to avoid 3h/yr. of failure without 

interconnections?
• In my opinion: no

• Limits
• Final electricity demand of the négaWatt scenario: realistic?

• Detailed bottom-up modelling
• But electrification lower than in other scenarios
• Difficult to forecast power consumption from air conditioning

• No modelling of inertia
• But “20 to 30% of wind and photovoltaic capacity inverters with grid-forming capabilities are sufficient to 

maintain frequency stability” (RTE 2020)
• No modelling of the electricity transportation and distribution grids
• No modelling of interconnection (would allow installing less capacities or electrify more)
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Thanks for your attention
philippe.quirion@cnrs.fr
https://www.negawatt.org/en
https://www.centre-cired.fr/the-eoles-family-of-models
https://github.com/CIRED/EOLES 
https://www.centre-cired.fr/philippe-quirion/
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Reserve
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Secondary reserves (FRR)
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